
derivatives of their viscosity are comparable to the analogous values for liquids in which 
intermolecular hydrogen bonds are absent. 

NOTATION 

P, pressure; T, temperature; N, Avogadro's number; R, universal gas constant; V, molar 
volume; h, Planck's constant; ~ and qo, dynamic viscosity of liquid at elevated and atmos- 
pheric pressure, respectively; p and po, density of liquid at elevated and atmospheric pres- 
sure, respectively; Ko, specific volume of "incompressible" nuclei; • , linear temperature 
coefficient of specific volume of incompressible nuclei; A@~ ~ , free activation energy of vis- 
cous flow; AH~ , activation enthalpy; AV~ , activation volume; ~, isobaric coefficient of 
cubical expansion. 
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VARIOUS CASES OF MUTUAL DISPLACEMENT OF IMMISCIBLE FLUIDS 

IN POROUS MEDIA 

M. V. Lur'e, V. M. Maksimov, and M. V. Filinov UDC 622.691.24 

All possible solutions to the problem of mutual displacement of immiscible fluids 
are obtained for the case of one-dimensional filtration with piecewise-uniform 
initial conditions. 

Displacement of crude oil or natural gas from a porous medium by water plays an import- 
ant role in oil and gas extraction. This process is basic in application of secondary meth- 
ods of oil extraction as well as in the tapping of underground basins formed in water-bear- 
ing bedrocks. 

For evaluating the effectiveness with which crude oil or natural gas is displaced by 
an immiscible fluid, one must know how the saturation of one of the phases in the bedrock 
varies. During the displacement process there forms a zone of concurrent flow of both fluids, 
the displacing fluid flowing through some pores and the displaced fluid flowing through 
others. Accordingly, the displacement of immiscible fluids can be treated as a process of 
two-phase filtration. 

In the case of uniform flow of incompressible fluids, when the surface tension between 
the two phases is small and the capillary pressure as well as the effects of gravity are neg- 
ligible, the displacement process is amenable to a simple mathematical description [i] such 
as that given by Buckley and Leverett. In this formulation, the problem was subsequently 
analyzed by several authors. In one study [2], the general properties of the saturation 
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field during displacement were analyzed, in other studies were proposed numerical methods of 
calculating a nonuniform flow [3]. However, no complete study of various cases of displace- 
ment by immiscible fluids has ever been made. In this study all possible solutions to the 
problem will be shown, for piecewise-uniform initial conditions, which are of fundamental 
importance in practical applications. 

We will consider the displacement of fluid 2 from a bedrock by fluid 1 which is pumped 
in. We assume that both fluids are incompressible and disregard capillary as well as gravi- 
tational forces. The zone of two-phase filtration forming in the process can be described 
by equations which in the one-dimensional case reduce to a single quasilinear differential 
equation for the saturation ~ of the displacing phase [2] 

a~ q (t) Of (~) m + -- O, (1)  
Ot x v-1 Ox 

where ~ = i, 2, 3 for, 
here is defined as 

respectively, forward, radial, or spherical flow. 

k~(~)+~ok~(a) 

The function f(o) 

and is equal to the fraction of the displacing fluid 1 in the total stream. Numerous experi- 
ments have established [4] that the relative penetration factors k:(o) and k=(o) do not de- 
pend on the ratio of the viscosity coefficients but are determined by the structure of the 
porous medium. 

The function f(o), called the Buckley-Leverett function, determines the degree to which 
the displacing fluid replaces the displaced one and also the pattern of the saturation dis- 
tribution over the bedrock. This function represents the ratio of filtration rates, viz., 
filtration rate of the displacing fluid to resultant filtration rate. The problems of en- 
hancing the oil or gas extraction reduce largely to application of measures affecting the 
bedrock so that the function f(o) will change in the direction of a more nearly complete dis- 
placement. 

As the degree of saturation increases, function f(o) increases monotonically from 0 to 
I. The graph of this function contains a characteristic inflection point oi with a concave 
segment and a convex segment, where the derivative f"(o) is, respectively, larger and smaller 
than zero [i]. The latter feature, as will become evident later on, distinguishes this prob- 
lem from those in gasdynamics. 

It is noteworthy that in the analysis of bidirectional processes occurring, e.g., dur- 
ing cyclic tapping of underground gas reserves, extraction of the fluid from the bedrock is 
described by the same Eq. (I), with an appropriately different reference system and with 
function f(o) replaced by function f~(~) = 1 -- f(l -- o) determining the displacement of fluid 

1 by fluid 2. 

For convenience, we introduce the new independent variables 

t 

"~= q ( t ) . d l ,  ~ - -  , ~----- 1, 2 / 3 .  
m - "r 

o 

The quantity ~ can be regarded as denoting the volume of a flow tube between the initial sec- 
tion and section x, the quantity �9 can be regarded as denoting the volume of fluid pumped 
into the bedrock during the time t. The fundamantal Eq. (i) then becomes 

a~ f, ac~ a--#- + (~) a~ = o .  (2) 

One must add here the initial and boundary conditions 

(~, o) = % (~) ; ~ (o, ~) = ~ ( ~ ) .  

We will consider the self-adjoint solutions which correspond to the conditions 

1.108 



I e(o) . . . .  z 

�9 " ~ o  = 

O O0 d~ i o:! 0 Sa 

3) 

e : /  o ~0 % 

Fig. !. Constructed solution and field Fig. 2. Constructed solution and field 
of characteristics for the case 0~0< of characteristics for the case0~0< 

o0<oi. ~a<~i~ ~ . 

a ~ (z) = a ~ = c o n s t  when ~ = 0 , 
( 3 )  

a0 (~) = a0 - const when , = 0 H ~ ~ 0 , 

w h e r e  ao a n d  ~o a r e  a r b i t r a r y  c o n s t a n t s  a n d ,  w i t h o u t  l o s s  o f  g e n e r a l i t y ,  ~o > a o .  The a n a l o -  
g o u s  p r o b l e m  f o r  a ~ = 1 was  c o n s i d e r e d  i n  a n o t h e r  s t u d y  [ 5 ] .  

Upon i n t r o d u c t i o n  o f  t h e  new v a r i a b l e  g = ~/m,  t h e  p r o b l e m  r e d u c e s  t o  t h e  o r d i n a r y  d i f -  
f e r e n t i a l  e q u a t i o n  

da ~ 0 (4) 
[ ~ - -  f' (a)] d~ 

f o r  t h e  f u n c t i o n  o = a ( ~ ) ,  0 ~ o o ,  s a t i s f y i n g  t h e  c o n d i t i o n s  a ( 0 )  = o ~ and  a ( ~ )  = ~o .  E q u a -  
t i o n  (4 )  h a s  two s e t s  o f  s o l u t i o n s :  

I) ~/~ ~ f' (~) (5) 

2) a = cons t .  (6 )  

A solution (5) is given in an implicit form. It follows from the properties of func- 
tion f'(a) that it satisfies the first condition when ~ = 0 and generally does not satisfy 
the second condition. A solution (6), with the constant equal to ao, will conversely satis- 
fy the condition at infinity but not the first boundary condition. 

Thus, constructing a self-adjoint solution involves "collocating" the elementary con- 
tinuous solutions (5) and (6) (centered waves and ranges of constant a) through jumps and 
determining the parameters which characterize these solutions as well as the discontinuities. 
Inasmuch as the discontinuities and the elementary solutions (simple waves) are determined 
by a finite number of parameters, this problem becomes an algebraic one and it follows from 
its self-adjointness that the discontinuity lines are straight in the plane of variables ~, 
T, which means that the discontinuities propagate at a constant velocity D. 

The characteristics of the differential equation (2) are straight lines 

= ~o + ~f' ( ~ ,  
a l o n g  w h i c h  t h e  s a t u r a t i o n  a r e m a i n s  c o n s t a n t .  T h i s  m e a n s  t h a t  e a c h  s a t u r a t i o n  l e v e l  a " p r o -  
p a g a t e s  a t  t h e  v e l o c i t y "  d ~ / d z  p r o p o r t i o n a l  t o  f i ( a ) .  I n  t h e  c a s e  o f  s t r a i g h t - p a r a l l e l  mo-  
t i o n  (v  = I )  d r  i s  t h e  t r u e  v e l o c i t y  o f  p r o p a g a t i o n  o f  a g i v e n  s a t u r a t i o n  l e v e l .  

On t h e  ~ = ~ ( T )  l i n e  o f  d i s c o n t i n u i t y  o f  t h e  s o l u t i o n  a ( ~ ,  T) t h e  r e l a t i o n  

D ---- ~ (m) -- [ (~ -- [ (a-) (7) 
~+_@- 

is satisfied which follows from the integral law of mass conservation. Here the superscripts 
"+" and "-" refer to values of ~, respectively, to the right and to the left of the discon- 
tinuity line. Equality (7) has a simple geometrical meaning: the velocity D of a discon- 
tinuity is equal to the tangent of the angle which the chord ABconnecting points on the f(o) 
curve with abscissas a + and o- makes with the a axis. 
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In order to extract the unique solution, it is necessary to satisfy the condition that 
the discontinuities be stable. In the given case of a sign-reversing function f"(o) this 
condition can be expressed in the form of the inequality 

f (o*) - -  f (c § > f (g*) - -  f (g-) 
o ~ _ _  ~+ ~ D g *  _ _  a -  , 

(8) 

which any value ~'6  (o--, g+) satisfies. This condition has been established originally in another 
study [6]. When G- and G + belong in the interval where f"(G) > 0, then the condition of 
stability can be formulated simpler as 

[' (a+) ~ D ~ [ '  (a-) , (9) 

i.e., that the slope of the discontinuity line must be smaller than the slope of the charac- 
teristics of Eq. (2) calculated from the saturation d + "behind a discontinuity" but larger 
than the slope of the characteristics calculated from the saturation ~- "before a discon- 
tinuity." 

It is well known [6] that a generalized solution to the given problem exists and that 
it will be unique when condition (8) or, in the case of f"(g) > 0, condition (9) has been 
satisfied. Let us construct all solutions corresponding to various locations of go and Go 
relative to oi, the Coordinate of the inflection point of the f(G) curve. The following 
situations are possible. 

I. O~go~g~ (Fig. i). Points so and G ~ lie on the segment where f"(G) > 0. In 
this case the velocity D of a saturation discontinuity is higher than that of perturbations 
f'(Go) before a discontinuity but lower than that of perturbations f'(G ~ behind a discon- 
tinuity. The pattern of characteristics corresponding to this case is shown in Fig. i. Here 
condition (9) is satisfied and the sought solution is 

(~, T) == { go when ~ <~ Di~, 
aowhen ~ > D i T ,  

(10) 

where D~ -- [ (%) -- [ (09 
O0--O o 

2. 0~o0~oi<o9 (Fig. 2). The initial saturation and the saturation of the displac- 
ing fluid lie on opposite sides of the abscissa ffi of the inflection point on the f(o) curve. 
Here are possible two subcases. In order to describe them, we drawn a tangent to the f(o) 
curve at the point M with the abscissa o = o ~ Owing to the biconvexity of function f(o), 
this tangent can intersect the f(G) curve at point A or not intersect it. Let o A denote the 
abscissa of this point A, if it exists. For determining this abscissa we have the equation 

[ (Z0) -- [ (GA) = ft (O0) (if0 -- OA ) , (~A # Z0) �9 

The s u b c a s e s  to  be c o n s i d e r e d  i n v o l v e  s a t i s f y i n g ,  r e s p e c t i v e l y ,  e i t h e r  one o f  t h e  two 
p o s s i b l e  i n e q u a l i t i e s  

a) 0 ~ G 0 ~ O A ;  b) U A ~ G 0 ~ U  i .  

When the said tangent does not intersect the f(o) curve and the abscissa of its intersection 
with the G axis is on the negative side, then the solution is constructed just as in the sec- 
ond subcase b). 

a) Let 0~g0<GA (Fig. 2). This subcase is characterized by the equivalence of both 
stability conditions (8) and (9). Here the solution is realized by a jumpwise transition 
from saturation ~o before a discontinuity to saturation G ~ behind it. Such a solution is 
stable because, as the graph in Fig. 2 indicates, the chord BM (gB = go) of the f(G) curve 
has a slope smaller than that of the tangent AM through point M but larger than that of the 
tangent to this curve through point B. Thus, condition (9) is satisfied. The pattern of 
characteristics in this subcase is shown in Fig. 2. The solution is, just as in the case i, 
given by expressions (I0). 

b) Now let aA~o0~oi (Fig. 3). In this case a jumpwise transition from saturation Go 
to saturation go is not possible, because condition (8) is not satisfied. 
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Fig. 3. Constructed solution and field Fig. 4. Constructed solution and field 
of characteristics for the case ~o~< of characteristics for the caseoi~o0< 

o i < o ~  a ~  

For  c o n s t r u c t i n g  t he  s o l u t i o n ~  from p o i n t  B (o = ~o) on t he  f ( o )  c u r v e  we draw t h e  
straight line BN tangent to this curve at point N (o = ON, ~i ~ ON < i) in such a way that 
the slope of the chord BN will be equal to the slope of the tangent to the f(o) curve at 
point N. For determining o N we have the equation 

( ~ )  _ f ( % ) =  f' ( ~ )  ( ~  - %) ,  (o~ 4= ~0~ 

The solution consists of a jumpwise transition from the initial saturation ~o to the satura- 
tion ~o along a discontinuity which propagates at the velocity D= 

D2 ---- [ (%) - -  f (aN) , 
( l O  - -  ( Y N  

of  a c e n t e r e d  r a r e f a c t i o n  wave ~/~=f ' (a) ,  ( a N ~ e , ~ o 0 )  , and a r a n g e  o f  c o n s t a n t  g = go f o r  
~<-..f'(oo)~. The pattern of characteristics for this subcase is shown in Fig. 3. The con- 
structed solution satisfies the stability requirements (8) and is 

o (L 9 = 

oo when ~ ~ f' (~0) ~ ,  

(~/~) when f' (oo) ~ < ~ < f' ( ~ )  ~ ,  

(~o when ~> f' ((~N) T, 

( l l )  

where q(~) is determined from the condition ~=f~ [~(~)] The quantities ~1----f'(o0)~0 and 
$2=f'(o~)To determine the boundaries of a centered rarefaction wave for T = ~o. 

The solution to the well-known Buckley--Leverett problem corresponding to ~o = 0 and 
~o = 1 we will consider as the limiting case of solution (ii). It is 

a(~,T) : [ T(t/T) when ~<f ' (ON)  T, 
[ 0 when ~ > f ' ( a N )  T, 

where f ' ( o N )  = f ( o N ) / 0  N and o N i s  c a l l e d  t h e  f r o n t a l  s a t u r a t i o n .  Th i s  s o l u t i o n  i s  o b v i o u s l y  
stable. 

3. ai~o0<o~ (Fig. 4). In this case a jump from ~o to ~o is impossible~ since con- 
dition (8) is not satisfied. The problem has a continuous solution which determines the 
transition from the high saturation level ~o to the lower saturation level oo through a cen- 
tered wave ~=f'(o), 60~-~_a ~ The pattern of characteristics for this case is shown in 
Fig. 4, where ~ = f'(~~ o and ~a = f'(~o)To. 

We have thus covered all possible situations. 

It is to be noted that the solutions to Eq. (2) for the conditions Oo(~) = ~o when 
0 < ~ < ~* and ~o(~) = 0 when ~ > ~* are constructed analogously. Such conditions are of in- 
terest in the study of bidirectional filtration processes during pumping and tapping of a 
fluid. 

NOTATION 

o, saturation of the displacing phase; ~o~ initial saturation of the displacing phase 
in the bedrock; ao, saturation of the displacing phase in a pore; oi, abscissa of the inflec- 
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tion point on the f(o) curve; m, porosity; q(t), resultant "specific" flow rate of fluid 
through a current tube; q(t) = Q(t)/ah and q(t) = Q(t)/2~h, respectively, for linear and ra- 
dial displacement; Q(t), volume flow rate of the phases; a and h, thickness and the width 
of the bedrock; DI and ~2, viscosity of the displacing fluid and of the displaced fluid, re- 
spectively; k~(o) and k2(o), relative penetration factors; f(o), Buckley--Leverett function; 
D, velocity of propagation of a saturation discontinuity; o + and ~-, saturation levels, re- 
spectively, to the "left" and to the "right" of a discontinuity; t, time; and x, space co- 
ordinate. 
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NUMERICAL ANALYSIS OF TRANSVERSE STREAMLINING 

OF A STAGGERED BUNDLE OF TUBES 

I. A. Belov and N. A. Kudryavtsev UDC 532.517.2:532.54 

The difference scheme of second-order precision [I] is applied to the analysis 
of transverse streamlining of coaxial circular tubes in a staggered bundle by a 
viscous incompressible fluid. 

We consider transverse streamlining of a bundle of tubes with a circular cross section 
(cylinders) of the same radius R* (here and henceforth the asterisk will denote a dimen- 
sional quantity) staggered parallel in a stream of a viscous heat-conducting incompressible 
fluid (Fig. i). The distances between the axes of neighboring cylinders are L* in the longi- 
tudinal direction (along the stream) and L** in the transverse direction (across the stream). 
Effects due to the finiteness of the bundle dimensions are eliminated in our calculations 
by considering a pair of cylinders in one of the inside rows. Such a formulation of the 
problem will make it possible, with finite dimensions L* and L~*, to use the conditions of 
periodicity of the solution at both the entrance to and the exit from the region covered by 
calculations, and to disregard any possible flow asymmetry even at relatively high values 
of the Reynolds number. 

The problem willbe numerically solved by a difference approximation of the Navier-- 
Stokes and energy equations according to the Arakawa scheme [i] of second-order precision 
for convective terms. The derivatives with respect to time are approximated with central 
differences. The region ABGHCEF of the mathematical model (Fig. i) is bounded by the planes 
of symmetry AB and HC, the planes BG, CD and MN, EF in which the conditions of periodicity 
are satisfied, and the surfaces AF, GH of cylinders. For calculating the flow around each 
cylinder, we place its center at the origin of its own polar system of coordinates (r, e) 
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